On Tachibana and Vishnevskii Operators Associated with Certain Structures in the Tangent Bundle
نویسندگان
چکیده
منابع مشابه
Old and New Structures on the Tangent Bundle
In this paper we study a Riemanian metric on the tangent bundle T (M) of a Riemannian manifoldM which generalizes Sasakian metric and Cheeger–Gromoll metric along a compatible almost complex structure which together with the metric confers to T (M) a structure of locally conformal almost Kählerian manifold. This is the natural generalization of the well known almost Kählerian structure on T (M)...
متن کاملMultiplication on the Tangent Bundle
Manifolds with a commutative and associative multiplication on the tangent bundle are called F-manifolds if a unit field exists and the multiplication satisfies a natural integrability condition. They are studied here. They are closely related to discriminants and Lagrange maps. Frobenius manifolds are F-manifolds. As an application a conjecture of Dubrovin on Frobenius manifolds and Coxeter gr...
متن کاملTangent Bundle of the Hypersurfaces in a Euclidean Space
Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...
متن کاملGromoll type metrics on the tangent bundle
In this paper we study a Riemanian metric on the tangent bundle T (M) of a Riemannian manifold M which generalizes the Cheeger Gromoll metric and a compatible almost complex structure which together with the metric confers to T (M) a structure of locally conformal almost Kählerian manifold. We found conditions under which T (M) is almost Kählerian, locally conformal Kählerian or Kählerian or wh...
متن کاملManifolds with an Su(2)-action on the Tangent Bundle
We study manifolds arising as spaces of sections of complex manifolds fibering over CP 1 with the normal bundle of each section isomorphic to O(k)⊗ Cn. Any hypercomplex manifold can be constructed as a space of sections of a complex manifold Z fibering over CP . The normal bundle of each section must be the sum of O(1)’s, and this suggests that interesting geometric structures can be obtained i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics and Physics
سال: 2018
ISSN: 2327-4352,2327-4379
DOI: 10.4236/jamp.2018.610168